Reactive programming

: : @minebocek W
Mine Qetlnkaya—Runde\ mine-cetinkaya-rundel ()

mine@rstudio.com %

mailto:mine@rstudio.com

Reactivity 101

Reactions

The input$ list stores the current value of each input object under its name.

Alpha:
0 0.2 1 .
e 1nput$ = 0.2
sliderInput(inputId = "alpha", S e e e e
label = "Alpha:",
min = 0, max = Alpha:
0 1 .
value = 0.5) _EE 1hput$ = 0.5
. Alpha:
0 1 .
-anu-t$ —m 1nput$ = 0.8

Reactivity

Reactivity automatically occurs when an 1nput value
is used to render an output object.

server ¢« function(input, output) {

output$scatterplot ¢ renderPlot(

goplot(data = movies, aes string(x = input$x, y = input$y,
color = input$z)) +
geom_point(alpha = input$alpha)

Your turn

* Modity 03-react-prog > to add a new

sliderInput() defining the size of points (ranging from 0 to 5). Use this

variable in the geom of the ggplot function as the s1ze argument. Run the
app to ensure that point sizes react when you move the slider.

~ Stretch goal: Set the interval between each selectable value on the slider to
0.25.

3m 005

Solution

Solutions to the previous exercises
> 03-react-prog > 02-reactivity.R

Reactivity catalog

Store values: reactiveValues / 1nput / makeReactiveBinding
Calculate values: reactive / eventReactive

Execute tasks: observe / observeEvent

Preventing reactivity: 1solate

Checking preconditions: req

Time (as a reactive source): 1nvalidatelLater

Rate-limiting: debounce / throttle

Live data: reactiveFileReader / reactivePoll

Reactivity catalog

Store values: / 1nput / makeReactiveBinding
Calculate values: / eventReactive
Execute tasks: / observeEvent

Preventing reactivity:

Checking preconditions:

Time (as a reactive source):
Rate-limiting: debounce / throttle

Live data: reactiveFileReader / reactivePoll

I/

all others are built on top.

Implementation of reactives

 Reactive values — reactiveValues():

* e.g. 1nput is a reactive value, which looks like a list, and contains many individual reactive values
that are set by input from the web browser

» Reactive expressions — reactive():
» Can access reactive values or other reactive expressions, and they return a value

» Usetul for caching the results of any procedure that happens in response to user input

> Observers — observe():

~ Can access reactive sources and reactive expressions, but they don't return a value; they are usea
for their side effects

* e.g. output is a reactive observer, which also looks like a list, and contains many individual
reactive observers that are created by using reactive values and expressions in reactive functions

Reactive expressions

Reactive expressions

> Open 03-react-prog > 03-reactivity.R, runthe app, and observe the
new functionality: selecting specitic genres of movies.

~ Can you spot any inefficiencies in this code? How can we fix it?

> Improved code can be found in 03-react-prog > O4-reactivity.R.

Observers

Observers

> Use to execute actions based on changing reactive values and other reactive
expressions.

» Doesn't return a value. So performing side eftects is usually the only reason
you'd want to create one of these.

» Eagerly executed by Shiny.

Reactive expressions vs. observers

Callable Not callable
Returns a value No return value
Lazy Eager

Cached N/A

No side effects Only for side effects

Reactive expressions vs. observers
vs. functions

Callable Not callable Callable
Returns a value No return value Returns a value
Lazy Eager Lazy

Cached N/A Not cached

Only for side Side effects

No side effects |
effects optional

Observers

> Open 03-react-prog > 05-reactivity.R, runthe app, and observed

the files that get added to the saved-data folder. When is a new file written
out?

> The behaviour seems a little haphazard. How might you improve it?

Your turn

* Modify 03-react-prog > 05-reactivity.R to add a button such that a
new file is written out when the button is pressed as opposed to every time

movies_subset() changes. Hint: You will use observeEvent() or

eventReactive().

S5m 00

Solution

Solutions to the previous exercises
> 03-react-prog > 06-reactivity.R

observeEvent vs. eventReactive

- observeEvent() is for event handling [REESSERENACUEIRGE ORI ELILEME
do this

> eventReactive() is for delayed })
computation

r <« eventReactive(when_this _changes, {
recalculate this

})

Use these functions when you want to explicitly name your reactive dependencies, as

opposed to letting reactive/observe implicitly depend on anything they read.

Your turn

> Open 03-react-prog > and run it. This app has several
problems:
~ We get an error right off the bat — the plot is running before the user has
specified any packages.
~ Unless you're a very fast typist, typing package names will cause the cranlogs
server to be queried with many incomplete queries.

> Add an "Update" actionButton() to the Ul, and make sure nothing happens
until it's clicked.

5m OOS

Solution

Solutions to the previous exercises
> 03-react-prog > 08-reactivity.R

Reactive values

Reactive values

> Reactive values are read/write versions of 1nput.

rv < reactiveValues(x = 10)

> reactiveValues() returns an object for storing

reactive values — similar to a list, but...
rv$x

 when you read a value from it, the calling
reactive expression takes a reactive dependency

on that value, and rvix <« 20

> when you write to it, it notities any reactive
functions that depend on that value.

Your turn

> Open 03-react-prog > 09-reactivity.R and run it. It has three action
buttons:
> Increment: Increase the value by 1
» Decrement: Decrease the value by 1
> Reset: Set the value to O

> Unfortunately, it doesn't work.

> Implement the server side. Hint: Use reactiveValues()!

S5m 00

Solution

Solutions to the previous exercises
> 03-react-prog > 10-reactivity.R

Tip
> Don'tuse reactiveValues() when you're calculating a value based on other

values and calculations that are already available to you.

> Do use reactiveValues() to store state that otherwise would be lost from
your graph of reactive objects.

Preventing reactivity

Preventing reactivity

> Use 1solate() from inside a reactive expression or observer, to ignore the
implicit reactivity of a piece of code.

> Wrap it around expressions or a whole code block.

Question

Determine when r1l, r2, and r3 update.

ri < reactive({
input$x * input$y
)

r2 < reactive({

input$x * isolate({ input$y })
})

r3 ¢« reactive({
isolate({ input$x * input$y })
})

Solution

#t Updates every time input$x or input$y change
rl < reactive({

input$x * input$y
})

#t Updates only when input$x changes
r2 < reactive({

input$x * isolate({ input$y })
})

Never updates; 1t will always have 1ts original value
r3 < reactive({

isolate({ input$x * input$y })
})

Checking
preconditions

Checking preconditions

» Cancel the current output (or observer) if a condition isn't met.
> req(input$text): Ensure the user has provided a value for the "text" input
> req(input$button): Ensure the button has been pressed at least once
 req(x %% 2 = 0): Ensure that x is an even number

> req(FALSE): Unconditionally cancel the current reactive, observer, or output

Checking preconditions

- reqg(cond) is similar to:
> stopifnot(cond)
> if (!'cond) stop()
» assertthat::assert that(cond)

» But with these differences:

> Errors during output rendering show up with bold red text in the Ul; req just makes
the output blank.

> Rather than veritying that cond is true, req verities that cond is truthy (see ?isTruthy)
> Feels unnatural to be so arbitrary and nebulous, but this definition is just too
practical for Ul programming.

 Most importantly, req is like an error in that it "infects" the downstream elements
of the reactive graph.

Your turn

» Open 03-react-prog > l1l-reactivity.R andrunit. It has lots of errors
in the browser and the R console — ignore those for the moment.

> From the app, upload the di1amonds. csv file found in the same directory. Now
everything looks good.

~ Diagnose why the errors appear when the app first comes up, and how you can

get them to go away. Hint: Use req().

S5m 00

Solution

Solutions to the previous exercises
> 03-react-prog > 12-reactivity.R

Time as a
reactive source

Question

What will this produce?

ui ¢« basicPage(
verbatimTextOutput("text")

)

server ¢« function(input, output){

r « reactive({ Sys.time() })
output$text ¢« renderPrint({ r() })

shinyApp(ui, server)

ui ¢« basicPage(
verbatimTextOutput("text")

)

server ¢« function(input, output){

r « reactive({ Sys.time() })
output$text ¢« renderPrint({ r() })

}

shinyApp(ui, server)

Solution

An app that reports

Sys.time() at the time
of first launch, and then
doesn’t update it.

What will this produce? QueStion

ui ¢« basicPage(
verbatimTextOutput("text")

)

server ¢« function(input, output){

r < reactive({
invalidatelLater(1000)
Sys.time()

})
output$text ¢« renderPrint({ r() })

shinyApp(ui, server)

Solution

ui « basicPage(An app updates reported

verbatimTextOutput("text") :
) ° Sys.time() every

second.

server ¢« function(input, output){

r < reactive({
invalidatelLater(1000)
Sys.time()

})
output$text ¢« renderPrint({ r() })

shinyApp(ui, server)

Limiting rate

Debounce and throttle

- |f a reactive value or expression changes too fast for downstream calculations to
keep up, your users will have a bad experience (laggy experience, wasted work).

> debounce() and throttle() take a reactive expression object as input,
and return a rate-limited version of that reactive expression.

fast reactive ¢« reactive({ ... })

throttled reactive ¢« throttle(fast reactive, 2000)

debounced reactive ¢ debounce(fast reactive, 1000)

Your turn

> Open 03-react-prog > 13-reactivity.Randrun it Click on the plota
few times to create points. Notice the annoying laggy behaviour — this is due to
a (simulated) expensive summary output.

> Use debounce() or throttle() to prevent the summary output from running
so often.

S5m 00

Solution

Solutions to the previous exercises
> 03-react-prog > l4-reactivity.R

Tip
~ This is not a true debounce/throttle in that it will not prevent R from being called

many times, but rather, the reactive invalidation signal that is produced by R is
debounced/throttled instead.

» These tunctions should be used when R is cheap but the things it will trigger
(downstream outputs and reactives) are expensive.

Reactive programming

: : @minebocek W
Mine Qetlnkaya—Runde\ mine-cetinkaya-rundel ()

mine@rstudio.com %

mailto:mine@rstudio.com

