
mine-cetinkaya-rundel
mine@rstudio.com

@minebocek
Mine Çetinkaya-Rundel

Reactive programming

mailto:mine@rstudio.com

Reactivity 101

sliderInput(inputId = "alpha",

 label = "Alpha:",

 min = 0, max = 1,

 value = 0.5)

Reactions
The input$ list stores the current value of each input object under its name.

input$alpha = 0.2

input$alpha = 0.5

input$alpha = 0.8input$alpha

Reactivity
Reactivity automatically occurs when an input value

is used to render an output object.

01 # Define server function required to create the scatterplot

02 server <- function(input, output) {

03 # Create the scatterplot object the plotOutput function is expecting

04 output$scatterplot <- renderPlot(

05 ggplot(data = movies, aes_string(x = input$x, y = input$y,

06 color = input$z)) +

07 geom_point(alpha = input$alpha)

08)

09 }

Your turn
‣ Modify 03-react-prog > 01-reactivity.R to add a new

sliderInput() defining the size of points (ranging from 0 to 5). Use this

variable in the geom of the ggplot function as the size argument. Run the
app to ensure that point sizes react when you move the slider.

‣ Stretch goal: Set the interval between each selectable value on the slider to
0.25.

Solution

Solutions to the previous exercises

> 03-react-prog > 02-reactivity.R

Reactivity catalog
‣ Store values: reactiveValues / input / makeReactiveBinding

‣ Calculate values: reactive / eventReactive

‣ Execute tasks: observe / observeEvent

‣ Preventing reactivity: isolate

‣ Checking preconditions: req

‣ Time (as a reactive source): invalidateLater

‣ Rate-limiting: debounce / throttle

‣ Live data: reactiveFileReader / reactivePoll

Reactivity catalog
‣ Store values: reactiveValues / input / makeReactiveBinding

‣ Calculate values: reactive / eventReactive

‣ Execute tasks: observe / observeEvent

‣ Preventing reactivity: isolate

‣ Checking preconditions: req

‣ Time (as a reactive source): invalidateLater

‣ Rate-limiting: debounce / throttle

‣ Live data: reactiveFileReader / reactivePoll Highlighted functions

are fundamental,

all others are built on top.

Implementation of reactives

‣ Reactive values – reactiveValues():

‣ e.g. input is a reactive value, which looks like a list, and contains many individual reactive values

that are set by input from the web browser

‣ Reactive expressions – reactive():

‣ Can access reactive values or other reactive expressions, and they return a value

‣ Useful for caching the results of any procedure that happens in response to user input

‣ Observers – observe():

‣ Can access reactive sources and reactive expressions, but they don’t return a value; they are used

for their side effects

‣ e.g. output is a reactive observer, which also looks like a list, and contains many individual
reactive observers that are created by using reactive values and expressions in reactive functions

Reactive expressions

Reactive expressions
‣ Open 03-react-prog > 03-reactivity.R, run the app, and observe the

new functionality: selecting specific genres of movies.

‣ Can you spot any inefficiencies in this code? How can we fix it?

‣ Improved code can be found in 03-react-prog > 04-reactivity.R.

Observers

Observers
‣ Use to execute actions based on changing reactive values and other reactive

expressions.

‣ Doesn't return a value. So performing side effects is usually the only reason
you'd want to create one of these.

‣ Eagerly executed by Shiny.

Reactive expressions vs. observers

reactive() observer()

Callable Not callable

Returns a value No return value

Lazy Eager

Cached N/A

No side effects Only for side effects

Reactive expressions vs. observers
vs. functions

reactive() observer() function()

Callable Not callable Callable

Returns a value No return value Returns a value

Lazy Eager Lazy

Cached N/A Not cached

No side effects Only for side
effects

Side effects
optional

Observers
‣ Open 03-react-prog > 05-reactivity.R, run the app, and observed

the files that get added to the saved-data folder. When is a new file written
out?

‣ The behaviour seems a little haphazard. How might you improve it?

Your turn
‣ Modify 03-react-prog > 05-reactivity.R to add a button such that a

new file is written out when the button is pressed as opposed to every time

movies_subset() changes. Hint: You will use observeEvent() or

eventReactive().

Solution

Solutions to the previous exercises

> 03-react-prog > 06-reactivity.R

observeEvent vs. eventReactive
‣ observeEvent() is for event handling

‣ eventReactive() is for delayed
computation

Use these functions when you want to explicitly name your reactive dependencies, as

opposed to letting reactive/observe implicitly depend on anything they read.

observeEvent(when_this_changes, {

 do_this

})

r <- eventReactive(when_this_changes, {

 recalculate_this

})

Your turn
‣ Open 03-react-prog > 07-reactivity.R and run it. This app has several

problems:

‣ We get an error right off the bat — the plot is running before the user has

specified any packages.

‣ Unless you're a very fast typist, typing package names will cause the cranlogs

server to be queried with many incomplete queries.

‣ Add an "Update" actionButton() to the UI, and make sure nothing happens
until it's clicked.

Solution

Solutions to the previous exercises

> 03-react-prog > 08-reactivity.R

Reactive values

Reactive values
‣ Reactive values are read/write versions of input.

‣ reactiveValues() returns an object for storing
reactive values — similar to a list, but…

‣ when you read a value from it, the calling
reactive expression takes a reactive dependency
on that value, and

‣ when you write to it, it notifies any reactive
functions that depend on that value.

Create

rv <- reactiveValues(x = 10)

Read

rv$x

Write

rv$x <- 20

Your turn
‣ Open 03-react-prog > 09-reactivity.R and run it. It has three action

buttons:

‣ Increment: Increase the value by 1

‣ Decrement: Decrease the value by 1

‣ Reset: Set the value to 0

‣ Unfortunately, it doesn't work.

‣ Implement the server side. Hint: Use reactiveValues()!

Solution

Solutions to the previous exercises

> 03-react-prog > 10-reactivity.R

Tip
‣ Don't use reactiveValues() when you're calculating a value based on other

values and calculations that are already available to you.

‣ Do use reactiveValues() to store state that otherwise would be lost from
your graph of reactive objects.

Preventing reactivity

Preventing reactivity
‣ Use isolate() from inside a reactive expression or observer, to ignore the

implicit reactivity of a piece of code.

‣ Wrap it around expressions or a whole code block.

Question
Determine when r1, r2, and r3 update.

r1 <- reactive({

 input$x * input$y

})

r2 <- reactive({

 input$x * isolate({ input$y })

})

r3 <- reactive({

 isolate({ input$x * input$y })

})

Solution

Updates every time input$x or input$y change

r1 <- reactive({

 input$x * input$y

})

Updates only when input$x changes

r2 <- reactive({

 input$x * isolate({ input$y })

})

Never updates; it will always have its original value

r3 <- reactive({

 isolate({ input$x * input$y })

})

Checking
preconditions

Checking preconditions
‣ Cancel the current output (or observer) if a condition isn't met.

‣ req(input$text): Ensure the user has provided a value for the "text" input

‣ req(input$button): Ensure the button has been pressed at least once

‣ req(x %% 2 == 0): Ensure that x is an even number

‣ req(FALSE): Unconditionally cancel the current reactive, observer, or output

Checking preconditions
‣ req(cond) is similar to:

‣ stopifnot(cond)

‣ if (!cond) stop()

‣ assertthat::assert_that(cond)

‣ But with these differences:

‣ Errors during output rendering show up with bold red text in the UI; req just makes

the output blank.

‣ Rather than verifying that cond is true, req verifies that cond is truthy (see ?isTruthy)

‣ Feels unnatural to be so arbitrary and nebulous, but this definition is just too

practical for UI programming.

‣ Most importantly, req is like an error in that it "infects" the downstream elements

of the reactive graph.

Your turn
‣ Open 03-react-prog > 11-reactivity.R and run it. It has lots of errors

in the browser and the R console — ignore those for the moment.

‣ From the app, upload the diamonds.csv file found in the same directory. Now
everything looks good.

‣ Diagnose why the errors appear when the app first comes up, and how you can

get them to go away. Hint: Use req().

Solution

Solutions to the previous exercises

> 03-react-prog > 12-reactivity.R

Time as a

reactive source

Question
What will this produce?

01 ui <- basicPage(

02 verbatimTextOutput("text")

03)

04

05 server <- function(input, output){

06

07 r <- reactive({ Sys.time() })

08 output$text <- renderPrint({ r() })

09

10 }

11

12 shinyApp(ui, server)

Solution

An app that reports
Sys.time() at the time
of first launch, and then
doesn’t update it.

01 ui <- basicPage(

02 verbatimTextOutput("text")

03)

04

05 server <- function(input, output){

06

07 r <- reactive({ Sys.time() })

08 output$text <- renderPrint({ r() })

09

10 }

11

12 shinyApp(ui, server)

QuestionWhat will this produce?

01 ui <- basicPage(

02 verbatimTextOutput("text")

03)

04

05 server <- function(input, output){

06

07 r <- reactive({

08 invalidateLater(1000)

09 Sys.time()

10 })

11 output$text <- renderPrint({ r() })

12

13 }

14

15 shinyApp(ui, server)

Solution
01 ui <- basicPage(

02 verbatimTextOutput("text")

03)

04

05 server <- function(input, output){

06

07 r <- reactive({

08 invalidateLater(1000)

09 Sys.time()

10 })

11 output$text <- renderPrint({ r() })

12

13 }

14

15 shinyApp(ui, server)

An app updates reported
Sys.time() every
second.

Limiting rate

Debounce and throttle
‣ If a reactive value or expression changes too fast for downstream calculations to

keep up, your users will have a bad experience (laggy experience, wasted work).

‣ debounce() and throttle() take a reactive expression object as input,
and return a rate-limited version of that reactive expression.

A reactive that updates as often as every 50 milliseconds

fast_reactive <- reactive({ ... })

A reactive that updates no more often than every 2000 milliseconds

throttled_reactive <- throttle(fast_reactive, 2000)

A reactive that doesn't update until fast_reactive has stopped

changing for at least 1000 milliseconds

debounced_reactive <- debounce(fast_reactive, 1000)

Your turn
‣ Open 03-react-prog > 13-reactivity.R and run it. Click on the plot a

few times to create points. Notice the annoying laggy behaviour — this is due to
a (simulated) expensive summary output.

‣ Use debounce() or throttle() to prevent the summary output from running
so often.

Solution

Solutions to the previous exercises

> 03-react-prog > 14-reactivity.R

Tip
‣ This is not a true debounce/throttle in that it will not prevent R from being called

many times, but rather, the reactive invalidation signal that is produced by R is
debounced/throttled instead.

‣ These functions should be used when R is cheap but the things it will trigger
(downstream outputs and reactives) are expensive.

mine-cetinkaya-rundel
mine@rstudio.com

@minebocek
Mine Çetinkaya-Rundel

Reactive programming

mailto:mine@rstudio.com

