Modules

. . @minebocek W
Mine Qetlnkaya—Runde\ mine-cetinkaya-rundel ()

mine@rstudio.com %

mailto:mine@rstudio.com

What i1s a module?

A module is a self-contained, composable component of a Shiny app
~ self-contained like a function

» can be combined to make an app
Have their own Ul and server (in addition to the app Ul and server)

Usetul for reusability

~ rather than copy and paste code, you can use modules to help manage the
pieces that will be repeated throughout a single app or across multiple apps

~ can be bundled into packages

Essential for managing code complexity in larger apps

Limitations to just functionalizing

~ It's possible to
~ write Ul-generating functions and call them from your app’s Ul, and

~ write functions to be used in the server that define outputs and create reactive
expressions.

~ However names (ids) of the input and output components are global: all parts of
your server function can see all parts of your Ul.

>~ Modules give you the ability to create controls that can only be seen from within
the module via namespaces:“spaces” of “names” that are isolated from the rest

of the app.

> 04-modules > 01-histogram.R

library()

< fluidPage(

selectInput(: , names()),
numericInput(: : : = 1),
nlotOutput()
)
— (: :)
&« reactive([[11)

<~ renderPlot({
hist(data(), = :
|3 = 96)

[
—/

}

shinyApp(

4

Module Ul

ui < fluidPage(
selectInput(, names(mtcars)),
numericInput(, min = 1),
plotOutput(

)

histogramUI ¢
taglist(
selectInput(NS(id, , choices = names(mtcars)),
numericInput(NS(id, , min = 1),
plotOutput(NS(id,
)

}

histogramUIl <«
taglList(
selectInput(NS(id, . choices = names(mtcars)),

Module Ul

numericInput(NS(id, value = 10, min = 1),
plotOutput(NS(id,
)

}

> Put the Ul code inside a function that has an 1d argument

> Wrap each existing ID in a call to NS(), so that (e.g.) "var" turns into NS(1d,
“Var"

> Aside: taglList() allows you to bundle together multiple components
without actually implying how they’ll be laid out

Module server

server ¢ (input, output, session) f{
data ¢« reactive(mtcars[[input$var]l])
output$hist ¢ renderPlot({
hist(data(), breaks = input$bins, main = input$var)
}, res =)

}

histogramServer < (id) {
moduleServer(id, (input, output, session) {
data ¢« reactive(mtcars[[input$var]])
output$hist ¢ renderPlot({
hist(data(), breaks = input$bins, main = input$var)
}, res =)
})
}

histogramServer ¢« (id) {
moduleServer(id, (input, output, session) f{

S Module server

hist(data(), breaks = input$bins, main = input$var)
}, res = 96)

})

}

~ Module server gets wrapped inside another function which must have

an 1d argument

> This function calls moduleServer() with the id, and a function that looks like
a regular server function

> input$var and input$bins refer to the inputs with names NS(id,
"var") and NS(id, "bins")

Demo

> 04-modules > 02-histogram.R

Variable

&— mpg
< fluidPage(
histogramUI(

mpg

)

-

histogramServer(Q
} L
shinyApp(ui, . l

10 15 20 25 30

q
0 1 2 3 4 5 6 7

data()

Naming conventions

R/histogram-modules.R holds all the code for the module.
histogramUI() is the module Ul.
histogramServer() is the module server.

> histogramApp() creates a complete app for interactive experimentation and
more formal testing

Namespacing

> In the module Ul, the namespacing is explicit: you have to call NS(1id,

"name") every time you create an input or output.

> In the module server, the namespacing is implicit. You only need to use 1d in the call
to moduleServer() and then Shiny automatically namespaces input and output so
that in your module code input$name means the input with name NS(id,
"name”).

reactivity

4 Case study: ER injuries

3 B\

Shiny in action
Introduction

5 Workflow

6 Layout, themes, HTML
7 Graphics

8 User feedback

9 Uploads and downloads
10 Dynamic Ul

11 Bookmarking

12 Tidy evaluation

Mastering reactivity

Introduction

modules | M: X +

icwna™

19 Shiny modules

In the last chapter we used functions to decompose parts of your Shiny app into
independent pieces. Functions work well for code that is either completely on the
server side or completely on the client side. For code that spans both, i.e. whether the
server code relies on specific structure in the Ul, you'll need a new technigue:
nodules.

the simplest level, a module is a pair of Ul and server functions. The magic of
modules comes because these functions are constructed in a special way that creates
a "namespace”. So far, when writing an app, the names (id s) of the controls are
global: all parts of your server function can see all parts of your Ul. Modules give you
the ability to create controls that can only be seen from within the module. This is
called a namespace because it creates “spaces” of “names” that are isolated from
the rest of the app.

Shiny modules have two big advantages. Firstly, namespacing makes it easier to
understand how your app works because you can write, analyse, and test individual
components in isolation. Secondly, because modules are functions they help you
reuse code; anything you can do with a function, you can do with a module.

library(shiny)]

19.1 Motivation

Before we dive into the details of creating modules, it's useful to get a sense for how
they change the “shape” of your app. I'm going to borrow an example from Eric Nantz,
who talked about modules at rstudio::conf(2019): https://youtu.be/yILLVo2VL50, Eric

On this page
19 Shiny modules
19.1 Motivation

19.2 Module basics
19.2.1 Module Ul

19.2.2 Module
server

19.2.3 Updated
app

19.2.4
Namespacing

19.2.5 Naming
conventions

10.2.6 Exercises

19.3 Inputs and
outputs

19.3.1 Getting
started: Ul input +
server output

19.3.2 Case study:
selecting a
numeric variable

19.3.3 Server
inputs

19.3.4 Modules
inside of modules

19.3.b Case study:
histogram

19.3.6 Multiple

Learn

Modules

. . @minebocek W
Mine Qetlnkaya—Runde\ mine-cetinkaya-rundel ()

mine@rstudio.com %

mailto:mine@rstudio.com

