
mine-cetinkaya-rundel
mine@rstudio.com

@minebocek Mine Çetinkaya-Rundel

Troubleshooting

mailto:mine@rstudio.com

Writing robust code

Writing robust code
‣ Complexity is the problem; abstraction is the solution

‣ Software programs are far too large to reason about in their entirety

‣ Good programs are broken into fragments that you can reason about locally,
and compose reliably

‣ In other words, we break the program into simple fragments, and if we verify
that each fragment is correct, then the whole program is correct

‣ Are our fragments simple enough to understand?

‣ Do they compose reliably?

Understandable fragments
‣ Indent your code! (Ctrl+I/Cmd+I)

‣ Extract out complicated processing logic (as opposed to UI logic) into top-level
functions so you can test them separately

‣ Each function, reactive, observer, or module should be small, and do one thing

‣ Function/reactive/observer bodies that don't fit on a single screen is a bad code smell

‣ If you're having trouble giving something a meaningful name, maybe it's doing too
much

‣ When you encounter unavoidable complexity, at least try to firewall the complexity
behind as simple/straightforward an API as possible

‣ Even if it's hard to verify if the scary piece itself is correct, it's still easy to verify that its
callers are correct

Reliable composition
‣ Prefer "pure functions” — functions without side effects. Much less likely to

surprise you.

‣ When you do need side effects, don't put them in surprising places. Consider
following command-query separation — "asking a question should not change
the answer"

‣ Reactive expressions must not have side effects

‣ Avoid observers and reactive values, where possible; use reactive expressions if
you can help it

‣ Don't pass around environments and reactive values objects; this is similar to
sharing global variables, which is always good to avoid

‣ For ease of reasoning, prefer: pure functional > reactive > imperative (observers)

https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

Debugging tools

Standard R debugging tools
‣ Tracing

‣ print()/cat()/str()
‣ renderPrint eats messages, must use cat(file = stderr(), ""...)
‣ Also consider shinyjs package's logjs, which puts messages in the browser's

JavaScript console

‣ Debugger

‣ Set breakpoints in RStudio

‣ browser()
‣ Conditionals: if (!is.null(input$x)) browser()

‣ Learn more: Jenny Bryan | Object of type ‘closure’ is not subsettable - youtu.be/
vgYS-F8opgE

https://youtu.be/vgYS-F8opgE
https://youtu.be/vgYS-F8opgE

Shiny debugging tools

‣ Reactlog

‣ Restart R process

‣ Set options(shiny.reactlog = TRUE)
‣ In the browser, Ctrl+F3 (or Cmd+F3)

‣ Learn more: rstudio.github.io/reactlog

‣ Showcase mode:

‣ DESCRIPTION file

‣ runApp(display.mode = “showcase")
‣ Learn more: shiny.rstudio.com/articles/display-modes.html

Symptom: Outputs or observers don't execute when expected, or
execute too often

https://rstudio.github.io/reactlog/
https://shiny.rstudio.com/articles/display-modes.html

Shiny debugging tools

‣ This means an R error has occurred

‣ Look in R console for stack traces

‣ By default, Shiny hides "internal" stack traces. Use

options(shiny.fullstacktrace = TRUE) if necessary to show.

‣ Shiny/Shiny Server "sanitize" errors, for security reasons (every error message
is displayed as "An error has occurred")

‣ Learn more: shiny.rstudio.com/articles/sanitize-errors.html

Symptom: Red error messages in the UI or session abruptly terminates

https://shiny.rstudio.com/articles/sanitize-errors.html

Shiny debugging tools

‣ Check browser's JavaScript console for errors

‣ Listen in on conversation between client and server

‣ options(shiny.trace = TRUE) logs messages in the R console

‣ Use Chrome's Network tab to show individual websocket messages

Symptom: Server logic seems OK, but unexpected/broken/missing
results in browser

Your turn
‣ Open 05-troubleshooting/01-troubleshoot/app.R. It is broken in a

not-very-subtle way. See if you can find and fix the bug.

‣ Continue on for 05-troubleshooting/02-troubleshoot.R and 05-
troubleshooting/03-troubleshoot/app.R.

Common errors

Common errors

"Object of type 'closure' is not subsettable"

‣ You forgot to use () when retrieving a value from a reactive expression

plot(userData) should be plot(userData())

Common errors

"Unexpected symbol"
"Argument xxx is missing, with no default"

‣ Missing or extra comma in UI.

‣ Sometimes Shiny will realise this and give you a hint, or use RStudio editor
margin diagnostics.

Common errors

"Operation not allowed without an active reactive context.
(You tried to do something that can only be done from
inside a reactive expression or observer.)"

‣ Tried to access an input or reactive expression from directly inside the server
function. You must use a reactive expression or observer instead.

‣ Or if you really only care about the value of that input at the time that the

session starts, then use isolate().

Testing

Why automated testing with Shiny?
‣ There are many possible reasons for an application to stop working. These

reasons include:

‣ An upgraded R package has different behavior. (This could include Shiny
itself!)

‣ You make modifications to your application.

‣ An external data source stops working, or returns data in a changed format.

‣ Automated tests can alert you to these kinds of problems quickly and with
almost zero effort, after the tests have been created.

shinytest
‣ Shinytest uses snapshot-based testing strategy.

‣ The first time it runs a set of tests for an application, it performs some scripted
interactions with the app and takes one or more snapshots of the application’s
state.

‣ These snapshots are saved to disk so that future runs of the tests can compare
their results to them.

‣ Learn more: Mastering Shiny, Chapter 21. mastering-shiny.org/scaling-
testing.html

https://mastering-shiny.org/scaling-testing.html
https://mastering-shiny.org/scaling-testing.html

mine-cetinkaya-rundel
mine@rstudio.com

@minebocek Mine Çetinkaya-Rundel

Troubleshooting

mailto:mine@rstudio.com

