
mine-cetinkaya-rundel
cetinkaya.mine@gmail.com

@minebocek

Mine Çetinkaya-Rundel

Building user interfaces

mailto:cetinkaya.mine@gmail.com

Every Shiny app has a webpage that the user visits,

and behind this webpage there is a computer

that serves this webpage by running R.

When running your app locally,

the computer serving your app is your computer.

When your app is deployed,

the computer serving your app is a web server.

User interface

HTML

Server instructions

High level view

Multiple levels of abstraction
High-level funcs
fluidRow(...)

htmltools tags
div(class="row", ...)

Raw HTML markup
<div class="row">...</div>

Mix and match freely

Raw HTML markup
<div class="row">...</div>

htmltools tags
div(class="row", ...)

High-level funcs
fluidRow(...)

High level functions
‣ Functions that return htmltools objects

‣ Pros

‣ Less code, clearer intent

‣ Anyone can make their own

‣ Cons

‣ Less flexible

01 navbarPage(
02 "Page title", id = "nav",
03 tabPanel("Tab 1"),
04 tabPanel("Tab 2")
05)

HTMLtools objects
‣ HTML-generating R functions

‣ Pros

‣ All the power of HTML, but looks like R

‣ Automated CSS/JS dependency handling

‣ More composable, programmable than
HTML

‣ Cons

‣ Easy to misplace commas

‣ Almost as verbose as raw HTML

nav(class="navbar navbar-default navbar-static-top", role="navigation",
 div(class="container-"fluid",
 div(class="navbar-header",
 span(class="navbar-brand", "Page title")
),
 ul(class="nav navbar-nav shiny-tab-input”, id="nav", data-tabsetid="7546",
 li(class="active",
 a(href="#tab-7546-1", data-toggle="tab", data-value="Tab 1"),
),
 li(class="active",
 a(href="#tab-7546-2", data-toggle="tab", data-value="Tab 2"),
),
)
)
)

Raw HTML
‣ Pros

‣ Can do anything that's possible in a
webpage

‣ Familiar for designers, web developers

‣ Cons

‣ Unfamiliar for many R users

‣ Potentially lots of HTML needed for
conceptually simple tasks

‣ CSS/JavaScript dependencies must be
handled manually

<nav class="navbar navbar-default navbar-static-top" role="navigation">
 <div class="container-"fluid">
 <div class="navbar-header">
 Page title"
 "</div>
 <ul class="nav navbar-nav shiny-tab-input" id="nav" data-tabsetid="7546">
 <li class="active">
 Tab 1"
 "

 Tab 2"
 "
 "
 "</div>
"</nav>
<div class="container-"fluid">
 <div class="tab-content" data-tabsetid="7546">
 <div class="tab-pane active" data-value="Tab 1" id="tab-7546-1">"</div>
 <div class="tab-pane" data-value="Tab 2" id="tab-7546-2">"</div>
 "</div>
"</div>

lets R users write user interfaces using a simple,
familiar-looking API…

…but there are no limits for advanced users

Ladder of UI progression
1. Use built-in Shiny inputs/outputs and layouts

2. Use functions from external packages

3. Use tag objects and write UI functions

4. Author HTML templates

5. Create custom inputs/outputs, wrap existing CSS/JS libraries and frameworks

Built-in Shiny
inputs/outputs

and layouts 1

Inputs

Your turn
‣ If you have build a Shiny app before, you’ve probably used

a selectInput() widget. Sometimes the choices you
want to show your users are spelled/formatted differently
than how you want to use them in your Shiny code, e.g.
you might want to use Titlecase in the UI but lowercase
under the hood. Modify 02-building-ui/01-ui.R in
this way.

‣ Stretch goal: If you have a moderately long or hierarchical
list, you might want to organise your choices under
subheadings. Modify 02-building-ui/01-ui.R further
break up the list of cities into two under two subheadings:
Scotland and Switzerland. Hint: Read the documentation

for selectInput().

Solution

Solutions to the previous exercises
> 02-building-ui/02-ui.R
> 02-building-ui/03-ui.R

Question
Would you expect this piece of
code to result in an error? Why
or why not?

01 ui !<- !fluidPage(
02 selectInput(inputId = "city",
03 label = "Select city",
04 choices = c("edinburgh",
05 "glasgow",
06 "lausanne",
07 "zurich")),
08 strong("Selected city"),
09 textOutput(outputId = "selected_city"),
10)

Outputs

QuestionWhich render* and *Output function
duo is used to display this table?

Your turn
‣ Modify 02-building-ui/04-ui.R to so that the table is displayed, but nothing

else, i.e. remove the search, ordering, and filtering options.
‣ Hint 1: You'll need to read ?renderDataTable and review the options at

https://rstudio.github.io/DT/options.html and https://datatables.net/reference/
option.

‣ Hint 2: Remember how many automatic and manual cars there are and make sure
all are visible in the table output now that you don’t have a way of scrolling
through multiple pages.

‣ Stretch goal: Hide row numbers.

https://rstudio.github.io/DT/options.html
https://datatables.net/reference/option
https://datatables.net/reference/option

Solution

Solutions to the previous exercises
> 02-building-ui/05-ui.R
> 02-building-ui/06-ui.R

Layouts
Move beyond the familiar sidebar layout with facilities Shiny offers out of the box:

‣ Bootstrap grid framework – !fluidPage, fixedPage, !fluidRow, column

‣ Containers – wellPanel, absolutePanel, fixedPanel

‣ Navigation panels – tabsetPanel, navlistPanel, navbarPage

‣ Fill layouts – fillPage, fillRow, fillCol

‣ Modals and notifications – showModal, modalDialog

Bootstrap grid framework
‣ Every page has 12 invisible columns

‣ Each column of content must span an integral number of columns

‣ Simple R API for implementing Bootstrap grid

‣ !fluidPage(!!...) wraps the entire page

‣ !fluidRow(!!...) wraps each row's column

‣ column(width, !!...) wraps each column's content

ui !<- !fluidPage(
 !fluidRow(
 column(8, item1),
 column(4, item2, item3),
)
)

ui !<- !fluidPage(
 !fluidRow(
 column(8, item1),
 column(4, item2, item3),
),
 !fluidRow(
 column(3, item4),
 column(3, item5),
 column(3, item6),
 column(3, item7)
)
)

Your turn
‣ Modify 02-building-ui/07-ui.R to display the two outputs next to each

other (instead of above and below).

‣ Assign the left output to be 5 columns wide, and the right output to be 7
columns wide.

‣ Observe what happens as you change the width of the browser window.

‣ Stretch goal: What happens if you swap the order in which the two outputs are
calculated in the server function?

Solution

Solution to the previous exercise
> 02-building-ui/08-ui.R

Functions from
external packages2

External packages
‣ shinythemes

External packages
‣ shinythemes

‣ shinydashboard

External packages
‣ shinythemes

‣ shinydashboard

‣ shinyBS (@ebailey78)

External packages
‣ shinythemes

‣ shinydashboard

‣ shinyBS (@ebailey78)

‣ shinytoastr (@gaborcsardi)

External packages
‣ shinythemes

‣ shinydashboard

‣ shinyBS (@ebailey78)

‣ shinytoastr (@gaborcsardi)

‣ miniUI (for mobile devices or Shiny
Gadgets)

External packages
‣ shinythemes

‣ shinydashboard

‣ shinyBS (@ebailey78)

‣ shinytoastr (@gaborcsardi)

‣ miniUI (for mobile devices or Shiny
Gadgets)

‣ shinyjs (@daattali, perform many UI-
related JavaScript operations from R)

Your turn
‣ Modify 02-building-ui/08-ui.R to use a Bootstrap theme.

‣ Use the "Live theme selector" feature in shinythemes in your own app.

‣ Once you've decided on a theme, remove the theme selector and apply your
chosen theme permanently.

‣ See shinythemes instructions at rstudio.github.io/shinythemes.

https://rstudio.github.io/shinythemes/

Solution

Solution to the previous exercise
> 02-building-ui/09-ui.R

Tag objects and
UI functions3

An API for Composing HTML
‣ When Shiny was born, it came with a sub-package for composing HTML.

‣ These functions were so useful, they were extracted out into a separate
package: htmltools.

‣ Now used by rmarkdown and htmlwidgets as well.

HTML basics

RStudio

RStudio"

https://www.rstudio.com

RStudio"

HTML basics

End tag

Start tag Child content

Anatomy of a tag

Creates an anchor whose 
hyperlink reference is the URL 

https://www.rstudio.com.

RStudio"

Attribute name

Tag name Attribute value

Anatomy of a tag
‣ Text can contain tags

‣ Tags can optionally contain text and/or other tags

‣ Each start tag can have zero or more attributes

<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">Panel title"</h3>
 "</div>
 <div class="panel-body">
 Panel content
 "</div>
"</div>

Looks like R, means HTML
<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">
 Panel title
 "</h3>
 "</div>
 <div class="panel-body">
 Panel content
 "</div>
"</div>

01 div(class="panel panel-default",
02 div(class="panel-heading",
03 h3(class="panel-title",
04 "Panel title",
05)
06),
07 div(class="panel-body",
08 "Panel content"
09)
10)

Using tag functions
‣ All tag functions behave the same way:

‣ Call the function to create a tag object

‣ Named arguments become attributes

‣ Unnamed arguments become children

‣ Many common tags are exported as functions by htmltools

and shiny (p, h1-h6, a, br, div, span, img).

‣ All other tags can be accessed via the tags object.

‣ If you have lots of HTML to write, you can use the

withTags function — it makes the tags$ prefix optional.

Item 1!

↓

tags$li("Item 1")

withTags(
 ul(
 li("Item 1"),
 li("Item 2")
)
)

Tag attributes
‣ Any valid HTML attribute name can be used (use quotes if the name has dashes,

e.g. 
"data-toggle"="dropdown")

‣ Valid tag attribute values are:

‣ NULL (omit the attribute)

‣ NA (the attribute should be included with no value)

‣ Single-element character vector (or something to be coerced to character)

01 tags$input(type = "checkbox",
02 disabled = if (disabled) NA # else NULL
03)

Tag children
‣ Valid tag children are:

‣ Tag objects

‣ Single-element character vectors (treated as text)

‣ NULL (silently ignored)

‣ Raw HTML (see ?htmltools!::HTML)

‣ Lists of valid tag children

Using tags
‣ Tags are made using normal R functions that take normal parameters and return

normal values! You can do R-like things to them:  
tags$ul(lapply(1:10, tags$li))

‣ Print tag objects at the console to see their HTML source

‣ Call print(x, browse = TRUE) to see their rendered view instead

‣ Use htmltools!::browsable() to make an object show its rendered view
when printed, by default

‣ If your top-level object is a list, you'll need to wrap in tagList(!!...) to get
the right behaviour at the console (or in an R Markdown doc)

Your turn
‣ Open 02-building-ui/10-ui.R.

‣ Replace includeHTML("youtube_thumbnail.html") with the equivalent

htmltools tag objects. Hint: Take a look inside youtube_thumbnail.html.

Also, run includeHTML("youtube_thumbnail.html") in the console and
take a look at the raw HTML code it generates.

‣ Stretch goal: If you get that working, take the next step and define an R
function that takes a YouTube URL, a title, and a description, and returns a
thumbnail frame like the one you created.

Solution

Solutions to the previous exercises
> 02-building-ui/11-ui.R
> 02-building-ui/12-ui.R

Using raw html
‣ Incorporate tiny amounts of HTML using inline string literals wrapped in HTML()
‣ div(HTML("This is HTML!"))

‣ For chunks of (static) HTML, use includeHTML (or similar includeCSS,
includeScript)

‣ div(includeHTML("file.html"))

‣ Or go the other way, with the HTML Templates feature: start with HTML, and
embed R expressions that yield tag objects

‣ Read mode at shiny.rstudio.com/articles/templates.html

https://shiny.rstudio.com/articles/templates.html

mine-cetinkaya-rundel
cetinkaya.mine@gmail.com

@minebocek

Mine Çetinkaya-Rundel

Building user interfaces

mailto:cetinkaya.mine@gmail.com

