
mine-cetinkaya-rundel
cetinkaya.mine@gmail.com

@minebocek

Mine Çetinkaya-Rundel

Reactive programming

mailto:cetinkaya.mine@gmail.com

Reactivity 101

sliderInput(inputId = "alpha",
 label = "Alpha:",
 min = 0, max = 1,
 value = 0.5)

Reactions
The input$ list stores the current value of each input object under its name.

input$alpha = 0.2

input$alpha = 0.5

input$alpha = 0.8input$alpha

Reactivity
Reactivity automatically occurs when an input value

is used to render an output object.

01 # Define server function required to create the scatterplot
02 server "<- function(input, output) {
03 # Create the scatterplot object the plotOutput function is expecting
04 output$scatterplot "<- renderPlot(
05 ggplot(data = movies, aes_string(x = input$x, y = input$y,
06 color = input$z)) +
07 geom_point(alpha = input$alpha)
08)
09 }

Your turn
‣ Modify 03-react-prog/01-reactivity.R to add a new

sliderInput() defining the size of points (ranging from 0 to 5). Use this

variable in the geom of the ggplot function as the size argument. Run the
app to ensure that point sizes react when you move the slider.

‣ Stretch goal: Set the interval between each selectable value on the slider to
0.25.

Solution

Solutions to the previous exercises
> 03-react-prog/02-reactivity.R

Reactivity catalog
‣ Store values: reactiveValues / input / makeReactiveBinding

‣ Calculate values: reactive / eventReactive

‣ Execute tasks: observe / observeEvent

‣ Preventing reactivity: isolate

‣ Checking preconditions: req

‣ Time (as a reactive source): invalidateLater

‣ Rate-limiting: debounce / throttle

‣ Live data: reactiveFileReader / reactivePoll

Reactivity catalog
‣ Store values: reactiveValues / input / makeReactiveBinding

‣ Calculate values: reactive / eventReactive

‣ Execute tasks: observe / observeEvent

‣ Preventing reactivity: isolate

‣ Checking preconditions: req

‣ Time (as a reactive source): invalidateLater

‣ Rate-limiting: debounce / throttle

‣ Live data: reactiveFileReader / reactivePoll Highlighted functions
are fundamental,

all others are built on top.

Implementation of reactives

‣ Reactive values – reactiveValues():

‣ e.g. input is a reactive value, which looks like a list, and contains many individual reactive values
that are set by input from the web browser

‣ Reactive expressions – reactive():

‣ Can access reactive values or other reactive expressions, and they return a value

‣ Useful for caching the results of any procedure that happens in response to user input

‣ Observers – observe():

‣ Can access reactive sources and reactive expressions, but they don’t return a value; they are used
for their side effects

‣ e.g. output is a reactive observer, which also looks like a list, and contains many individual
reactive observers that are created by using reactive values and expressions in reactive functions

Reactive expressions

Reactive expressions
‣ Open 03-react-prog/03-reactivity.R, run the app, and observe the

new functionality: selecting specific genres of movies.

‣ Can you spot any inefficiencies in this code? How can we fix it?

‣ Improved code can be found in 03-react-prog/04-reactivity.R.

Observers

Observers
‣ Use to execute actions based on changing reactive values and other reactive

expressions.

‣ Doesn't return a value. So performing side effects is usually the only reason
you'd want to create one of these.

‣ Eagerly executed by Shiny.

Reactive expressions vs. observers

reactive() observer()

Callable Not callable

Returns a value No return value

Lazy Eager

Cached N/A

No side effects Only for side effects

Reactive expressions vs. observers
vs. functions

reactive() observer() function()

Callable Not callable Callable

Returns a value No return value Returns a value

Lazy Eager Lazy

Cached N/A Not cached

No side effects Only for side
effects

Side effects
optional

Observers
‣ Open 03-react-prog/05-reactivity.R, run the app, and observed the

files that get added to the saved-data folder. When is a new file written out?

‣ The behaviour seems a little haphazard. How might you improve it?

Your turn
‣ Modify 03-react-prog/05-reactivity.R to add a button such that a new

file is written out when the button is pressed as opposed to every time

movies_subset() changes. Hint: You will use observeEvent() or

eventReactive().

Solution

Solutions to the previous exercises
> 03-react-prog/06-reactivity.R

observeEvent vs. eventReactive
‣ observeEvent() is for event handling

‣ eventReactive() is for delayed
computation

Use these functions when you want to explicitly name your reactive dependencies, as

opposed to letting reactive/observe implicitly depend on anything they read.

observeEvent(when_this_changes, {
 do_this
})

r "<- eventReactive(when_this_changes, {
 recalculate_this
})

Your turn
‣ Open 03-react-prog/07-reactivity.R and run it. This app has several

problems:
‣ We get an error right off the bat — the plot is running before the user has

specified any packages.
‣ Unless you're a very fast typist, typing package names will cause the cranlogs

server to be queried with many incomplete queries.

‣ Add an "Update" actionButton() to the UI, and make sure nothing happens
until it's clicked.

Solution

Solutions to the previous exercises
> 03-react-prog/08-reactivity.R

Reactive values

Reactive values
‣ Reactive values are read/write versions of input.

‣ reactiveValues() returns an object for storing
reactive values — similar to a list, but…

‣ when you read a value from it, the calling
reactive expression takes a reactive dependency
on that value, and

‣ when you write to it, it notifies any reactive
functions that depend on that value.

Create
rv "<- reactiveValues(x = 10)

Read
rv$x

Write
rv$x "<- 20

Your turn
‣ Open 03-react-prog/09-reactivity.R and run it. It has three action

buttons:
‣ Increment: Increase the value by 1
‣ Decrement: Decrease the value by 1
‣ Reset: Set the value to 0

‣ Unfortunately, it doesn't work.

‣ Implement the server side. Hint: Use reactiveValues()!

Solution

Solutions to the previous exercises
> 03-react-prog/10-reactivity.R

Tip
‣ Don't use reactiveValues() when you're calculating a value based on other

values and calculations that are already available to you.

‣ Do use reactiveValues() to store state that otherwise would be lost from
your graph of reactive objects.

Preventing reactivity

Preventing reactivity
‣ Use isolate() from inside a reactive expression or observer, to ignore the

implicit reactivity of a piece of code.

‣ Wrap it around expressions or a whole code block.

Question
Determine when r1, r2, and r3 update.

r1 "<- reactive({
 input$x * input$y
})

r2 "<- reactive({
 input$x * isolate({ input$y })
})

r3 "<- reactive({
 isolate({ input$x * input$y })
})

Solution

Updates every time input$x or input$y change
r1 "<- reactive({
 input$x * input$y
})

Updates only when input$x changes
r2 "<- reactive({
 input$x * isolate({ input$y })
})

Never updates; it will always have its original value
r3 "<- reactive({
 isolate({ input$x * input$y })
})

Checking
preconditions

Checking preconditions
‣ Cancel the current output (or observer) if a condition isn't met.

‣ req(input$text): Ensure the user has provided a value for the "text" input
‣ req(input$button): Ensure the button has been pressed at least once
‣ req(x "%% 2 "== 0): Ensure that x is an even number
‣ req(FALSE): Unconditionally cancel the current reactive, observer, or output

Checking preconditions
‣ req(cond) is similar to:
‣ stopifnot(cond)
‣ if (!cond) stop()
‣ assertthat"::assert_that(cond)

‣ But with these differences:
‣ Errors during output rendering show up with bold red text in the UI; req just makes

the output blank.
‣ Rather than verifying that cond is true, req verifies that cond is truthy (see ?isTruthy)
‣ Feels unnatural to be so arbitrary and nebulous, but this definition is just too

practical for UI programming.
‣ Most importantly, req is like an error in that it "infects" the downstream elements

of the reactive graph.

Your turn
‣ Open 03-react-prog/11-reactivity.R and run it. It has lots of errors in

the browser and the R console — ignore those for the moment.

‣ From the app, upload the diamonds.csv file found in the same directory. Now
everything looks good.

‣ Diagnose why the errors appear when the app first comes up, and how you can

get them to go away. Hint: Use req().

Solution

Solutions to the previous exercises
> 03-react-prog/12-reactivity.R

Time as a
reactive source

Question
What will this produce?

01 ui "<- basicPage(
02 verbatimTextOutput("text")
03)
04
05 server "<- function(input, output){
06
07 r "<- reactive({ Sys.time() })
08 output$text "<- renderPrint({ r() })
09
10 }
11
12 shinyApp(ui, server)

Solution

An app that reports
Sys.time() at the time
of first launch, and then
doesn’t update it.

01 ui "<- basicPage(
02 verbatimTextOutput("text")
03)
04
05 server "<- function(input, output){
06
07 r "<- reactive({ Sys.time() })
08 output$text "<- renderPrint({ r() })
09
10 }
11
12 shinyApp(ui, server)

QuestionWhat will this produce?

01 ui "<- basicPage(
02 verbatimTextOutput("text")
03)
04
05 server "<- function(input, output){
06
07 r "<- reactive({
08 invalidateLater(1000)
09 Sys.time()
10 })
11 output$text "<- renderPrint({ r() })
12
13 }
14
15 shinyApp(ui, server)

Solution
01 ui "<- basicPage(
02 verbatimTextOutput("text")
03)
04
05 server "<- function(input, output){
06
07 r "<- reactive({
08 invalidateLater(1000)
09 Sys.time()
10 })
11 output$text "<- renderPrint({ r() })
12
13 }
14
15 shinyApp(ui, server)

An app updates reported
Sys.time() every
second.

Limiting rate

Debounce and throttle
‣ If a reactive value or expression changes too fast for downstream calculations to

keep up, your users will have a bad experience (laggy experience, wasted work).

‣ debounce() and throttle() take a reactive expression object as input,
and return a rate-limited version of that reactive expression.

A reactive that updates as often as every 50 milliseconds
fast_reactive "<- reactive({ ""... })

A reactive that updates no more often than every 2000 milliseconds
throttled_reactive "<- throttle(fast_reactive, 2000)

A reactive that doesn't update until fast_reactive has stopped
changing for at least 1000 milliseconds
debounced_reactive "<- debounce(fast_reactive, 1000)

Your turn
‣ Open 03-react-prog/13-reactivity.R and run it. Click on the plot a few

times to create points. Notice the annoying laggy behaviour — this is due to a
(simulated) expensive summary output.

‣ Use debounce() or throttle() to prevent the summary output from running
so often.

Solution

Solutions to the previous exercises
> 03-react-prog/14-reactivity.R

Tip
‣ This is not a true debounce/throttle in that it will not prevent R from being called

many times, but rather, the reactive invalidation signal that is produced by R is
debounced/throttled instead.

‣ These functions should be used when R is cheap but the things it will trigger
(downstream outputs and reactives) are expensive.

mine-cetinkaya-rundel
cetinkaya.mine@gmail.com

@minebocek

Mine Çetinkaya-Rundel

Reactive programming

mailto:cetinkaya.mine@gmail.com

