
mine-cetinkaya-rundel
cetinkaya.mine@gmail.com

@minebocek

Mine Çetinkaya-Rundel

Modules

mailto:cetinkaya.mine@gmail.com

What is a module?
‣ A module is a self-contained, composable component of a Shiny app

‣ self-contained like a function

‣ can be combined to make an app

‣ Have their own UI and server (in addition to the app UI and server)

‣ Useful for reusability

‣ rather than copy and paste code, you can use modules to help manage the
pieces that will be repeated throughout a single app or across multiple apps

‣ can be bundled into packages

‣ Essential for managing code complexity in larger apps

Limitations to just functionalizing
‣ It’s possible to write UI-generating functions and call them from your app’s UI,

and you write functions for the server that define outputs and create reactive
expressions

‣ However you must make sure your functions generate input and output IDs that
don’t collide since input and output IDs in Shiny apps share a global namespace,
meaning, each ID must be unique across the entire app

‣ Solution: Namespaces! Modules add namespacing to Shiny UI and server logic

–Matthew Flatt

“Roughly, hygienic macro expansion is desirable for the
same reason as lexical scope: both enable

local reasoning about binding so that program
fragments compose reliably.”

–Matthew Flatt

“Roughly, hygienic macro expansion is desirable for the
same reason as lexical scope: both enable

local reasoning about binding so that program
fragments compose reliably.”

Shiny modules

Demo

Ladder of progression
‣ Step 1. Use modules to break large monolithic apps into manageable pieces

‣ Step 2. Create reusable modules

‣ Step 3. Nest modules

Anatomy of a
Shiny module

What’s in a module?

01 library(shiny)
02 name_of_module_UI !<- function(id, label = "Some label") {
03 # Create a namespace function using the provided id
04 ns !<- NS(id)
05 # UI elements go here
06 tagList(
07 !!...
08)
09 }
10
11 name_of_module !<- function(input, output, session, …) {
12 # Server logic goes here
13 }

Module vs. app
‣ Similarities:

‣ Inputs in UI can be accessed in server with input$
‣ Outputs in UI can be defined in server with output$

‣ Differences:

‣ Inputs/outputs cannot be directly accessed from outside the module namespace

‣ If a module needs to use a reactive expression, take the reactive expression as a function
parameter. If a module wants to return reactive expressions to the calling app, then return a list
of reactive expressions from the function

‣ If a module needs to access an input that isn’t part of the module, the containing app should
pass the input value wrapped in a reactive expression

Module UI
‣ A function

‣ Takes, as input, an id that gets pre-pended to all HTML element ids with a

helper function: NS()

‣ Can also have additional parameters

Module server
‣ Includes the code needed for your module

‣ Looks almost identical to the app server function, except that you may have
additional parameters

‣ App server function is automatically invoked by Shiny; module server function
must be invoked by the app author

Calling the module
‣ In the app UI:

‣ Include the module UI with name_of_module_UI("id", …)
‣ Can also include other UI elements that are not included in the module

‣ In the app server:

‣ Include the module server with callModule(name_of_module, "id", …)

‣ Can also include other UI elements that are not included in the module

‣ The id must match and must be unique among other inputs/outputs/modules at
the same "scope" (either top-level ui/server, or within a parent Shiny module)

Demo
01 ui !<- !fluidPage(
02 …
03 titlePanel("Gapminder"),
04 tabsetPanel(id = "continent",
05 tabPanel("All", gapModuleUI("all")),
06 tabPanel("Africa", gapModuleUI("africa")),
07 tabPanel("Americas", gapModuleUI("americas")),
08 tabPanel("Asia", gapModuleUI("asia")),
09 tabPanel("Europe", gapModuleUI("europe")),
10 tabPanel("Oceania", gapModuleUI("oceania"))
11)
12)

01 server !<- function(input, output) {
02 callModule(gapModule, "all", all_data)
03 callModule(gapModule, "africa", africa_data)
04 callModule(gapModule, "americas", americas_data)
05 callModule(gapModule, "asia", asia_data)
06 callModule(gapModule, "europe", europe_data)
07 callModule(gapModule, "oceania", oceania_data)
08 }

Your turn
‣ Open 04-modules/01-modules.R and run it. The app has three tabs: one

for each title type, showing a scatterplot and data table.

‣ The app is created by repeating the plotting and data table code chunks three
times each.

‣ Modularize the app using 04-modules/02-modules.R and 04-modules/
02-moviesmodules.R as a starting points.

Solution

Solutions to the previous exercises
> 04-modules/03-movies.R
> 04-modules/03-moviesmodule.R

Combining modules

Combining modules
‣ When building an app that uses modules that depend on each other, avoid

violating the sanctity of the module's namespace (similar to a function's local
environment)

‣ If results of Module 1 will be used as inputs in Module 2, then Module 1 needs
to return those results as an output, so that Module 2 does not have to “reach in
and grab them”

Demo
> 04-modules/04-left-right.R

Clearly actions are repeated on the left and right
for different datasets, so make use of modules.

mine-cetinkaya-rundel
cetinkaya.mine@gmail.com

@minebocek

Mine Çetinkaya-Rundel

Modules

mailto:cetinkaya.mine@gmail.com

