
mine-cetinkaya-rundel
cetinkaya.mine@gmail.com

@minebocek

Mine Çetinkaya-Rundel

Troubleshooting

mailto:cetinkaya.mine@gmail.com

Writing robust code

Writing robust code
‣ Complexity is the problem; abstraction is the solution

‣ Software programs are far too large to reason about in their entirety

‣ Good programs are broken into fragments that you can reason about locally,
and compose reliably

‣ In other words, we break the program into simple fragments, and if we verify
that each fragment is correct, then the whole program is correct

‣ Are our fragments simple enough to understand?

‣ Do they compose reliably?

Understandable fragments
‣ Indent your code! (Ctrl+I/Cmd+I)

‣ Extract out complicated processing logic (as opposed to UI logic) into top-level
functions so you can test them separately

‣ Each function, reactive, observer, or module should be small, and do one thing

‣ Function/reactive/observer bodies that don't fit on a single screen is a bad code smell

‣ If you're having trouble giving something a meaningful name, maybe it's doing too
much

‣ When you encounter unavoidable complexity, at least try to firewall the complexity
behind as simple/straightforward an API as possible

‣ Even if it's hard to verify if the scary piece itself is correct, it's still easy to verify that its
callers are correct

Reliable composition
‣ Prefer "pure functions” — functions without side effects. Much less likely to

surprise you.

‣ When you do need side effects, don't put them in surprising places. Consider
following command-query separation — "asking a question should not change
the answer"

‣ Reactive expressions must not have side effects

‣ Avoid observers and reactive values, where possible; use reactive expressions if
you can help it

‣ Don't pass around environments and reactive values objects; this is similar to
sharing global variables, it introduces hidden coupling

‣ For ease of reasoning, prefer: pure functional > reactive > imperative (observers)

https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

Debugging tools

Standard R debugging tools
‣ Tracing

‣ print()/cat()/str()
‣ renderPrint eats messages, must use cat(file = stderr(), ""...)
‣ Also consider shinyjs package's logjs, which puts messages in the browser's

JavaScript console

‣ Debugger

‣ Set breakpoints in RStudio

‣ browser()
‣ Conditionals: if (!is.null(input$x)) browser()

Shiny debugging tools

‣ Reactlog

‣ Restart R process

‣ Set options(shiny.reactlog = TRUE)
‣ In the browser, Ctrl+F3 (or Cmd+F3)

‣ Showcase mode:

‣ DESCRIPTION file

‣ runApp(display.mode = "showcase")

Symptom: Outputs or observers don't execute when expected, or
execute too often

Shiny debugging tools

‣ This means an R error has occurred

‣ Look in R console for stack traces

‣ By default, Shiny hides "internal" stack traces. Use

options(shiny.fullstacktrace = TRUE) if necessary to show.

‣ Shiny/Shiny Server "sanitise" errors, for security reasons (every error message
is displayed as "An error has occurred")

‣ See sanitising errors article for more details, including how to view the real
errors

Symptom: Red error messages in the UI or session abruptly terminates

https://shiny.rstudio.com/articles/sanitize-errors.html

Shiny debugging tools

‣ Check browser's JavaScript console for errors

‣ Listen in on conversation between client and server

‣ options(shiny.trace = TRUE) logs messages in the R console

‣ Use Chrome's Network tab to show individual websocket messages

Symptom: Server logic seems OK, but unexpected/broken/missing
results in browser

Your turn
‣ Open 05-troubleshooting/01-troubleshoot.R. It is broken in a not-

very-subtle way. See if you can find and fix the bug.

‣ Continue on for 05-troubleshooting/02-troubleshoot.R through 05-
troubleshooting/04-troubleshoot.R.

Solution

Solutions to the previous exercises

05-troubleshooting
> /01-troubleshoot.R: Missing and erroneous commas

> /02-troubleshoot.R: Reactive was not being called with "()"
> /03-troubleshoot.R: Namespace not defined for modules

Common errors

Common errors

"Object of type 'closure' is not subsettable"

‣ You forgot to use () when retrieving a value from a reactive expression 
plot(userData) should be plot(userData())

Common errors

"Unexpected symbol"  
"Argument xxx is missing, with no default"

‣ Missing or extra comma in UI.

‣ Sometimes Shiny will realise this and give you a hint, or use RStudio editor
margin diagnostics.

Common errors

"Operation not allowed without an active reactive context.
(You tried to do something that can only be done from
inside a reactive expression or observer.)"

‣ Tried to access an input or reactive expression from directly inside the server
function. You must use a reactive expression or observer instead.

‣ Or if you really only care about the value of that input at the time that the

session starts, then use isolate().

Testing

Why automated testing with Shiny?
‣ There are many possible reasons for an application to stop working. These

reasons include:

‣ An upgraded R package has different behavior. (This could include Shiny
itself!)

‣ You make modifications to your application.

‣ An external data source stops working, or returns data in a changed format.

‣ Automated tests can alert you to these kinds of problems quickly and with
almost zero effort, after the tests have been created.

shinytest
‣ Shinytest uses snapshot-based testing strategy.

‣ The first time it runs a set of tests for an application, it performs some scripted
interactions with the app and takes one or more snapshots of the application’s
state.

‣ These snapshots are saved to disk so that future runs of the tests can compare
their results to them.

Integration testing

Coming to CRAN with the next release of Shiny!

shiny.rstudio.com/articles/integration-testing.html

https://shiny.rstudio.com/articles/integration-testing.html

mine-cetinkaya-rundel
cetinkaya.mine@gmail.com

@minebocek

Mine Çetinkaya-Rundel

Troubleshooting

mailto:cetinkaya.mine@gmail.com

