
Understanding reactivity
Mine Çetinkaya-Rundel

mine-cetinkaya-rundel   
mine@rstudio.com   

@minebocek   

mailto:mine@rstudio.com


Reactivity 101



Reactions

The input$ list stores the current value of each input object under its name.

# Set alpha level 
sliderInput(inputId = "alpha",  
            label = "Alpha:",  
            min = 0, max = 1,  
            value = 0.5)

input$alpha

input$alpha = 0.2

input$alpha = 0.5

input$alpha = 0.8



Reactivity 101
Reactivity automatically occurs when an input value  

is used to render an output object

# Define server function required to create the scatterplot 
server <- function(input, output) { 

# Create the scatterplot object the plotOutput function is expecting 
  output$scatterplot <- renderPlot( 
   ggplot(data = NHANES, aes_string(x = input$x, y = input$y, 

                                     color = input$z)) + 
geom_point(alpha = input$alpha) 

  ) 
}



Reactive flow



DEMO

Suppose you want the option to plot only 
certain education level(s) as well as report how 
many such participants are plotted: 

1. Add a UI element for the user to select which 
education level(s) they want to plot 

2. Filter for chosen education level(s) and save 
as a new (reactive) expression 

3. Use new data frame (which is reactive) for 
plotting 

4. Use new data frame (which is reactive) also 
for reporting number of observations



# Select which education level(s) to plot 
checkboxGroupInput(inputId = "education", 
                   label = "Select education level(s):”, 
                   choices = levels(NHANES$Education), 
                   selected = "College Grad")

1. Add a UI element for the user to select which 
education level(s) they want to plot



# Server 
# Create a subset of data filtering for chosen education level(s)
NHANES_subset <- reactive({
  req(input$education)
  filter(NHANES, title_type %in% input$education)
})

2. Filter for chosen education level(s) and save as a 
new (reactive) expression

Creates a cached expression 
that knows it is out of date 

when input changes



3. Use new data frame (which is reactive) for plotting

# Create the scatterplot object the plotOutput function is expecting 
output$scatterplot <- renderPlot({ 
  ggplot(data = NHANES_subset(), aes_string(x = input$x, y = input$y, 
                                            color = input$z)) + 
    geom_point(…) + 
    … 
})

Cached - only re-run 
when inputs change



4. Use new data frame (which is reactive) also for 
printing number of observations
# UI
mainPanel(
  …
  # Print number of obs plotted
  uiOutput(outputId = "n"),
  …
  )
# Server
output$n <- renderUI({
  types <- NHANES_subset()$title_type %>% 
    factor(levels = input$selected_type) 
  counts <- table(types)
   
  HTML(paste("There are", counts, input$selected_type, “participants in this 
dataset.<br>"))
})



DEMO

Putting it altogether

nhanes-apps/nhanes-05.R

Also notice 
- HTML tags for visual separation 
- req()



When to use reactives
- By using a reactive expression for the subsetted data frame, we were able to get 

away with subsetting once and then using the result twice 

- In general, reactive conductors let you 

- not repeat yourself (i.e. avoid copy-and-paste code) which is a maintenance boon) 

- decompose large, complex (code-wise, not necessarily CPU-wise) calculations into 
smaller pieces to make them more understandable 

- These benefits are similar to what happens when you decompose a large complex R 
script into a series of small functions that build on each other



?
Suppose we want to plot only a random sample of 
participants, of size determined by the user. What is 
wrong with the following?

# Server 
# Create a new data frame that is a sample of n_samp  
# observations from NHANES 
NHANES_sample <- sample_n(NHANES_sample(), input$n_samp)  

# Plot the sampled participants 
output$scatterplot <- renderPlot({ 
  ggplot(data = NHANES_sample,  
         aes_string(x = input$x, y = input$y,  
                    color = input$z)) + 
    geom_point(…) 
})



SOLUTION

# Server 
# Create a new data frame that is a sample of n_samp  
# observations from NHANES 
NHANES_sample <- reactive({  
  req(input$n_samp)     # ensure availability of value 
  sample_n(NHANES_sample(), input$n_samp) 
})  

# Plot the sampled participants 
output$scatterplot <- renderPlot({ 
  ggplot(data = NHANES_sample(),  
         aes_string(x = input$x,  
                    y = input$y,  
                    color = input$z)) + 
    geom_point(…) 
})



Render functions



Render functions

- Provide a code chunk that describes how an output should be populated 

- The output will update in response to changes in any reactive values or reactive 
expressions that are used in the code chunk

render*({ [code_chunk] })





Recap

- These functions make objects to display 

- Results should always be saved to output$ 

- They make an observer object that has a block of code associated with it 

- The object will rerun the entire code block to update itself whenever it is 
invalidated 

render*({ [code_chunk] })



Implementation



Implementation of reactives
- Reactive values – reactiveValues(): 

- e.g. input: which looks like a list, and contains many individual reactive values that are set by 
input from the web browser 

- Reactive expressions – reactive(): they depend on reactive values and observers depend on 
them 

- Can access reactive values or other reactive expressions, and they return a value 

- Useful for caching the results of any procedure that happens in response to user input 

- e.g. reactive data frame subsets we created earlier 

- Observers – observe(): they depend on reactive expressions, but nothing else depends on them 

- Can access reactive sources and reactive expressions, but they don’t return a value; they are used 
for their side effects 

- e.g. output object is a reactive observer, which also looks like a list, and contains many individual 
reactive observers that are created by using reactive values and expressions in reactive functions



Reactive expressions vs. observers
- Similarities: Both store expressions that can be executed 

- Differences: 

- Reactive expressions return values, but observers don’t  

- Observers (and endpoints in general) eagerly respond to reactives, but 
reactive expressions (and conductors in general) do not 

- Reactive expressions must not have side effects, while observers are only 
useful for their side effects



Your turn

Debug the following app scripts: 

- review/whats-wrong.R 

- review/mult-3.R 

- review/add-2.R


