Understanding reactivity

Mine Cetinkaya-Rundel

@minebocek W
mine-cetinkaya-rundel €)
mine@rstudio.com %

mailto:mine@rstudio.com

Reactivity 101

Reactions

The input$ list stores the current value of each input object under its name.

Alpha:
0 0.2 1
— inputs$ = 0.2
Set alpha level | -
sliderInput(inputId = y
Label = "Alpha:", Alpha:
min = 0, max = 1, O—EB | inputs$ = 0.5
value = 0.5) s
Alpha:
: @ - 0.8

-input$ G inputs

Reactivity 101

Reactivity automatically occurs when an input value
is used to render an output object

server <- function(input, output) {

outputSscatterplot <- renderPlot(
goplot(data = NHANES, aes_string(x = input$x, y = inputSy,

color = 1input$Sz)) +
geom_point(alpha = input$)

Reactive flow

Suppose you want the option to plot only
certain education level(s) as well as report how
many such participants are plottea:

1. Add a Ul element for the user to select which
education level(s) they want to plot

2. Filter for chosen education level(s) and save
as a new (reactive) expression

3. Use new data frame (which is reactive) tor

plotting

4. Use new data frame (which is reactive) also

for reporting number ot observations

DEMO

1. Add a Ul element for the user to select which
education level(s) they want to plot

Select which education level(s) to plot
checkboxGroupInput(inputId = "education",
label = "Select education level(s):”,
choices = levels(NHANESSEducation),
selected = "College Grad")

2. Filter for chosen education level(s) and save as a
new (reactive) expression

Server)

Create a subset of data filtering_fer#€hosen educ| Creates a cached expression

NHANES_subset <- reactive({ that knows it is out of date
reg(input$education) when input changes
filter(NHANES, title_type %1n% input$education)

¥)

3. Use new data frame (which is reactive) for plotting

Create the scatterplot object the plotOutput function i< evnacting

outputSscatterplot <- renderPlot({
goplot(data = NHANES subset(), aes_string(x -
CO

Cached - only re-run

when inputs change

geom_point(..) +

1)

4. Use new data frame (which is reactive) also for
orinting number of observations

mainPanel(

uiOutput(outputId = "n"),
)

output$n <- renderUI({
types <- $title_type %>%
factor(levels = input$selected_type)
counts <- table(types)

HTML(paste("There are", counts, input$selected_type, “participants in this
dataset.
"))

¥)

w’wf

Putting it altogether E
nhanes—apps/nhanes-05.R

DEMO

Also notice
- HTML tags for visual separation

— req()

N\

Shing

When to use reactives

- By using a reactive expression for the subsetted data frame, we were able to get
away with subsetting once and then using the result twice

- In general, reactive conductors let you
- not repeat yourself (i.e. avoid copy-and-paste code) which is a maintenance boon)

- decompose large, complex (code-wise, not necessarily CPU-wise) calculations into
smaller pieces to make them more understandable

- These benetits are similar to what happens when you decompose a large complex R
script into a series of small functions that build on each other

Suppose we want to plot only a random sample of
participants, of size determined by the user. What is

wrong with the tollowing?

NHANES_ _sample <- sample_n(NHANES_sample(), input$Sn_samp)

outputSscatterplot <- renderPlot({
goplot(data = NHANES_sample,
aes_string(x = inputS$Sx, y = inputsSy,
color = inputS$Sz)) +

geom_point(..)

NHANES _sample <-
req(inputSn_samp)
sample_n(NHANES_sample(), input$Sn_samp)

outputSscatterplot <- renderPlot({
gogplot(data = NHANES_sample(),
aes_string(x = input$x, SOLUTION
y = inputSy,
color = inputS$Sz)) +
geom_point(..)

Render functions

Render functions

render*x({ [code_chunk] })

- Provide a code chunk that describes how an output should be populated

- The output will update in response to changes in any reactive values or reactive
expressions that are used in the code chunk

DT::renderDataTable(expr. m dataTableOutput(outputld,icon, ...
options, callback, escape,

env, quoted)

renderlmage(expr, env, quoted, deleteFile) |ma eOutput(outputld, width, height, click,
blclick, hover, hoverDelay, hoverDelayType

brush cllckld hoverld inline)

- renderPlot(expr, width, height, res, .., env, PlotOutput(outputld, width, height, click,
quoted, func) dblclick, hover, hoverDelay, hoverDelayType,
brush, clickld, hoverld, inline)

wo=-=- renderPrint(expr, env, quoted, func, verbatimTextOutput(outputid)
N width)
=========| renderTable(expr,..., env, quoted, func) tableOutput(outputld)
foo renderText(expr, env, quoted, func) textOutput(outputld, container, inline)
— - renderUl(expr, env, quoted, func) uiOutput(outputld, inline, container, ...)

htmlOutput(outputld, inline, container, ...)

Recap

render*x({ [code_chunk] })

- These functions make objects to display
- Results should always be saved to output$
- They make an observer object that has a block of code associated with it

- The object will rerun the entire code block to update itself whenever it is
invalidated

Implementation

Implementation of reactives

- Reactive values — reactiveValues():

- e.g. input: which looks like a list, and contains many individual reactive values that are set by
input from the web browser

- Reactive expressions — reactive(): they depend on reactive values and observers depend on
them

- Can access reactive values or other reactive expressions, and they return a value
- Usetul tfor caching the results of any procedure that happens in response to user input
- e.g. reactive data frame subsets we created earlier
- Observers —observe(): they depend on reactive expressions, but nothing else depends on them

- Can access reactive sources and reactive expressions, but they don't return a value; they are used
for their side effects

- e.g. output object is a reactive observer, which also looks like a list, and contains many individual
reactive observers that are created by using reactive values and expressions in reactive functions

N\

S

Jﬁyd“

Reactive expressions vs. observers

- Similarities: Both store expressions that can be executed

- Differences:

- Reactive expressions return values, but observers don't

- Observers (and endpoints in general) eagerly respond to reactives, but
reactive expressions (and conductors in general) do not

- Reactive expressions must not have side effects, while observers are only
useful for their side effects

Your turn

Debug the following app scripts:
— review/whats-wrong.R
— review/mult-3.R

— review/add-2.R

5m 005

